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Wave function statistics for ballistic quantum transport through chaotic open billiards:
Statistical crossover and coexistence of regular and chaotic waves
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For ballistic transport through chaotic open billiards, we implement accurate fully quantal calculations of the
probability distributions and spatial correlations of the local densities of single-electron wave functions within
the cavity. We find wave-statistical behaviors intrinsically different from those in their closed counterparts.
Chaotic-scattering wave functions in open systems can be quantitatively interpreted in terms of statistically
independent real and imaginary random fields in the same way as for wave-function statistics of closed systems
in the time-reversal symmetry-breaking crossover regime. We also discuss perceived statistical deviations,
which are attributed to the coexistence of regular and chaotic waves and given analytical explanations.
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I. INTRODUCTION

Complexity in the quantum mechanical behavior of cla
sically nonintegrable systems may be one of the most
triguing subjects in the field of quantum chaos. The study
morphological complexity in the eigenstates of chaotic b
liards has been actively carried out@1#. The properties of
nodal lines~or points! in the wave dynamics are closely re
lated to spectral geometry in optics@2#.

Historically, McDonald and Kaufman first numerically re
vealed the complicated eigen function structures in a clo
two dimensional~2D! chaotic billiard @3#. We denote the
scaled local density asy(r )5Vuc(r )u2, whereV is the vol-
ume of the system, in which a single-particle wave funct
c(r ) is normalized in terms of the positionr . It is well
known that the probability distribution of the local densiti
of a chaotic eigenfunction of a closed system is the Por
Thomas~PT! distribution @4#,

P~y!5~1/A2py!exp~2y/2!, ~1.1!

described by a Gaussian orthogonal ensemble~GOE! of ran-
dom matrices, when time-reversal symmetry~TRS! is
present, i.e.,cPR. On the other hand, the distribution is a
exponential@4,5#,

P~y!5exp~2y!, ~1.2!

described by a Gaussian unitary ensemble~GUE! of random
matrices, when TRS is broken in the closed system, i.ec
PC. c has nodal lines in the former case while it has no
points in the latter case. At the same time, Berry has
cussed the coordinate dependence of the semiclassical
function in the classically chaotic regime, adopting an id
of an infinite superposition of plane waves with a fixed wa
numberk, but with random directions and amplitudes~so-
called Berry function! @6#. He showed that the space
averaged spatial correlation of the 2D wave function
given by
1063-651X/2001/64~5!/056208~12!/$20.00 64 0562
-
-
f

-

d

n

r-

l
-
ve

a

s

^c~r1!c* ~r2!&5const3J0~kr !, ~1.3!

wherer[ur12r2u andJ0(x) is the Bessel function of zeroth
order. Later, within the super-symmetry formalism, t
disorder-averaged~equivalently space-averaged! spatial cor-
relation of the local densities in disordered~i.e., chaotic! 2D
billiards was found to be@5,7#

P2~kr ![^y~r1!y~r2!&511cJ0
2~kr !, ~1.4!

where c52 for GOE ~TRS! and c51 for GUE ~broken
TRS! eigenfunctions.

Investigations of the continuous transition of the wav
function statistics between GOE and GUE symmetries h
been also worked out. Assuming a complex wave functi
c5u1w, whereu andv are independent random variable
with a common mean valuêu&5^v&50, a common vari-
ance^u2&5^v2&51 and^uv&50, we introduce a transition
parameterbP(1,2# into the weights foru and v as c
5A1/bu1 iA121/bv. Then we have the probability distri
bution @8–12#:

P~y!5
b

2Ab21
expS 2

b2

4~b21!
yD I 0S b~22b!

4~b21!
yD ,

~1.5!

whereI 0(x) is the modified Bessel function of zeroth orde
and the spatial correlation@13#:

P2~kr !511F11S 22b

b D 2GJ0
2~kr !. ~1.6!

For b→1 and b→2, both equations tend to the GOE an
GUE cases, respectively. We should note that the transi
~1.5! may be described as well by other probability distrib
tion functions derived by an interpolation of thexn

2 distribu-
tion with n continuously varying between 1 and 2@14#, an
energy averaging of the random matrix elements of Ham
tonians representing the GOE-GUE crossover@15# and the
©2001 The American Physical Society08-1
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ISHIO, SAICHEV, SADREEV, AND BERGGREN PHYSICAL REVIEW E64 056208
supersymmetry method for disordered~imperfectly open!
systems in an arbitrary magnetic field@16#. However, the
assumption of independent fluctuations foru and v in the
derivation of Eqs.~1.5! and~1.6! is most naturally adopted in
the context of this paper, as we will see later. Experimen
agreement with these theoretical predictions is obtained
ing thin microwave cavities with TRS@17,18#, without TRS
@18#, and in the TRS-breaking crossover regime@13#. The
predictions are also confirmed numerically for closed b
liards with TRS@19–23#. On the other hand, there is also
remarkable work for a ‘‘partially’’ open chaotic resonat
@24#: Assuming a real random matrix model associated w
the internal real eigenfunctions with aPT distribution and
adding an imaginary effective potential representing a pr
ing point contact, the authors showed that the density dis
bution of the wave function at the point contact coincid
with Eq. ~1.5!.

All the conventional considerations mentioned abo
however, are basically concerned with closed systems o
the limit of imperfectcoupling. To the best of our knowl
edge, one work was carried out for the wave-density dis
bution and its joint probability distribution in relation toper-
fect coupling to the environment@11#. Using independen
Gaussian variables for Rec and Imc following from the
central limit theorem to great number of random wave sup
positions, they derived Eq.~1.5! for the wave-density distri-
bution in the crossover regime between closed and open
tems. Nevertheless, the way how to identify the independ
random variables in general situations, the validity of t
random variable assumption in real systems etc. still rem
unclarified in spite of the fact that they are more clos
related to experimental situations.

The aim of this paper is to give deeper insight into t
wave statistics for perfectly open systems by consider
ballistic quantum transport through chaotic open billiar
with no magnetic field. In Sec. II, we explicitly discuss tim
reversibility, space reciprocity breaking and resulting wa
statistical crossover in the open systems. We present a
ternative simple derivation of Eqs.~1.5! and~1.6! in Sec. III.
More importantly, we also show how to identify the tw
independent random fields in a given wave function. We w
find in Sec. IV that Eqs.~1.5! and ~1.6! for the crossover
regime are applicable to the ballistic transport through c
otic open billiards. We also discuss statistical deviations
tributed to the coexistence of regular and chaotic waves. S
tion V consists of conclusions.

II. TIME REVERSIBILITY, SPACE RECIPROCITY
BREAKING AND WAVE STATISTICAL CROSSOVER

It is essential that the scattering wave function,cs , in the
open systems is no more a real function in general, i.e.,
different from an eigenfunction of time-reversal closed s
tems. It is because thespace reciprocityin conservative
closed systems, which means that each plane wave in
Berry function ties up with its counterpart with the sam
amplitude and running in the opposite direction in phase
lost by coupling to the environment in open systems. T
requires the use of boundary conditions allowing for the n
05620
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zero probability current density: j (r )
5(\/m)Im@cs* (r )¹cs(r )#. Such boundary conditions ca
be naturally obtained only for complex wave functions p
scribing the distribution of incoming flows on the boundar
On the other hand, the Hamiltonian operator,Ĥ, of the sys-
tem in our case is real and invariant on reverse of timeT̂:t
→2t by definition. Therefore, the real and imaginary pa
of scattering state,cs(5us1 ivs), are independent solution
of the time-independent Schro¨dinger equation for a station
ary state. In other words, for an incoming wavec05u0
1 iv0 , us andvs can respond in different manners inside t
scattering domain, which are determined by the initial wa
components,u0 andv0 @e.g., Neumann and Dirichlet bound
ary conditions, respectively, for a plane wavec0;cos(k•r )
1 i sin(k•r ) at a boundaryk•r50#. This fact is remarkable
when we apply the random matrix theory~RMT! to the
wave-function statistics in open systems. It is expected
~i! the resulting statistics is close to the GOE ifus andvs are
strongly correlated~i.e., cs can be expressed with real func
tions only!, while ~ii ! it is the GUE if they are completely
uncorrelated~i.e., us andvs are statistically independent an
have equal weight!. An extreme example of the case~i! is a
single-mode total reflection where the entire space recip
ity recovers and the GOE statistics holds completely. T
weak localization effect, i.e., coherent backscattering
time-reversed paths, partially plays the same role, howe
it may be hard to distinguish this effect from another if bo
coexist. In any case, the value ofb may provide a quantita-
tive measure of the degree of the space-reciprocity brea
in open systems.

Finally, we should remark that the expressions for t
scattering wave statistics in open systems are in comp
analogy with those for the eigenfunction statistics in clos
systems with broken TRS@11#. This is because boundar
conditions allowing forj (Þ0) are introduced for a solution
of the dynamical state with broken TRS in the case of op
systems, and not because coupling to the environment br
the TRS of the dynamics itself, which is completely dete
mined byĤ.

III. ANALYTICAL SIMPLE DERIVATION OF WAVE-
FUNCTION STATISTICS IN THE CROSSOVER REGIME

We start with a simple but essential assumption that
arbitrary chaotic-scattering wave function,cs(r ), for a
single particle is related to itscanonical formby

cs~r !5eiac~r !, ~3.1!

where c(r ) is a phase-invariant canonical wave functio
whose real and imaginary parts can be viewed as statistic
independent Gaussian random fields. The rotation phase
tor, a, is attributed to the correlation between the two Gau
ian random fields. It is dependent on each system and ca
identified in experimental measurements or numerical sim
lations.

We first derive the canonical form ofcs(r )5us(r )
1 ivs(r ). In sufficient large systems compared to the wa
length, us and vs can be regarded as random and^us&
8-2
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WAVE FUNCTION STATISTICS FOR BALLISTIC . . . PHYSICAL REVIEW E 64 056208
5^vs&50. We introduce next notations:su
25^us

2&, sv
2

5^vs
2&, suv5^usvs&, ands25su

21sv
25^ucsu2&. We multi-

ply both sides of Eq.~3.1! by e2 ia:

c5e2 iacs[p1 iq. ~3.2!

Herep andq are real and imaginary parts ofc, respectively,
and

p5us cosa1vs sina, q52us sina1vs cosa.
~3.3!

We have to choosea in such a way thatp and q become
statistically independent:̂pq&50. Therefore, we get

tan 2a5
2suv

su
22sv

2 . ~3.4!

It is easy to show that the variances ofp andq are equal to

^p2&5
1

2
@s21As424~su

2sv
22suv

2 !#,

^q2&5
1

2
@s22As24~su

2sv
22suv

2 !#. ~3.5!

Here we assumedsu
2>sv

2 without losing generality, becaus
we can always multiplycs by 6 i ~or equivalentlya→a
6p/2!, if necessary, and then chooseaP@2p/4,p/4# from
Eq. ~3.4!. We note that botĥp2& and ^q2& are independen
of a. Introducing a parameter«(0<«<1) as ^q2&/^p2&
[«2, and together with the relation̂p2&1^q2&5s2, we ob-
tain ^p2&5@1/(11«2)#s2 and^q2&5@«2/(11«2)#s2. Then
we reach the canonical form:

c~r !5Fu~r !1 i«v~r !

A11«2 Gs, ~3.6!

whereu(r ) and v(r ) are statistically independent Gaussi
random fields witĥ u&5^v&5^uv&50, ^u2&5^v2&51 and
a Bessel correlation function~1.3!. The parameter« is calcu-
lated by

«5A12d

11d
, ~3.7!

where

d[
^p2&2^q2&

s2 5
1

s2 As424~su
2sv

22suv
2 !. ~3.8!

The value of« shows the degree of correlation betweenus
andvs . We have«50 in the case thatus andvs are com-
pletely correlated as in the case of time-reversal closed
tems while we have«51 if us andvs are completely uncor-
related, i.e., the Berry function. In the following discussio
s2 @ands in Eq. ~3.6!# is chosen to be unity, correspondin
to the normalization,̂ ucsu2&(5^ucu2&)[1.

In particular, the random wave density in the system
equal to
05620
s-

,

s

r«~r !5
u2~r !1«2v2~r !

11«2 . ~3.9!

In the following, we investigate statistical dependence of
normalized random wave density~3.9! on the parameter«.
@An analogous derivation of Eq.~3.15! is found in Ref.@11#.
In their theory, however, the value of« is not determined for
a given wave in general situations.#

We recall that chaotic wave densities in closed syste
follow the PT distribution~1.1! whose singularity atr50 is
stipulated by the characteristic behavior ofu2(r ) in the vi-
cinity of ‘‘self-avoiding’’ nodal lines. In open systems, nod
lines are disappeared for any«.0, and, as a result, the sin
gularity of the density distribution~1.1! is eliminated. This
becomes evident when we calculate the distribution of
random wave density~3.9! for arbitrary«.

We consider the cumulative distribution of the wave de
sities. It is equal to the probability

G«~r!5PS u21w2

11«2 ,r D , ~3.10!

where we used the auxiliary random fieldw(r )5«v(r ). The
probability ~3.10! is equal to

G«~r!5E E
C~r,«!

f ~u,w!du dw, ~3.11!

whereC(r,«) is a circle in the plane$u, w%, centered at the
origin and with radiusA(11«2)r. Now, we take into ac-
count thatf (u,w) is a joint distribution of Gaussian random
valuesu, w and has the form

f ~u,w!5
1

2p«
expF2

1

2 S u21
1

«2 w2D G . ~3.12!

Substituting this distribution into the integral~3.11!, we get

G«~r!5
1

2p E
0

2p 12exp@2rm~m1n cosu!#

m1n cosu
du.

~3.13!

Here we used the notations:

m5
1

2 S 1

«
1« D , n5

1

2 S 1

«
2« D ~m1n51/«, m2n5«!.

~3.14!

After differentiating both sides of Eq.~3.13! with respect to
r, we get the wave-density distribution,

f «~r!5m exp~2m2r!I 0~mnr!, ~3.15!

whereI 0(x) is the modified Bessel function of zeroth orde
Next, we derive wave-density correlation function d

pending on«. Using the rule of fourth moments of Gaussia
random fields splitting@5,7#, it is easy to show that the cor
relation function is equal to
8-3
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br~s!5^r«~r !r«~r1s!&

5
^@u2~r !1«2v2~r !#@u2~r1s!1«2v2~r1s!#&

~11«2!2

511c~«!J0
2~ks!, ~3.16!

where the coefficient

c~«!52
11«4

~11«2!2 ~3.17!

describes the influence of openness on the wave-density
relation function.

Finally, we notice that, by defining

«[Ab21, ~3.18!

Eqs. ~3.15! and ~3.16! coincide with Eqs.~1.5! and ~1.6!
obtained by RMT, respectively.

IV. NUMERICAL ANALYSES AND DISCUSSIONS

For numerical analyses, we consider a 2D Bunimov
stadium billiard@25#. It is characterized by the radius of
semicirclea and the half-length of a straight sectionl. The
maximum Lyapunov exponent reaches its maximum at
fully chaotic limit (a5 l ) @26#. In the following, we simply
refer to this limit as the stadium. The billiard is coupled to
pair of leads with a common widthd.

In quantum dynamics, the dc current passes through
leads. We solve the time-independent Schro¨dinger equation
for a single electron under Dirichlet boundary conditio
based on the plane-wave-expansion method@27#, giving re-
flection and transmission amplitudes as well as local w
functions for each energy.

Figure 1 shows transmission probabilityT as a function of
Fermi wave numberk for the incoming wave with propagat
ing moden in the lead.T is directly connected to conduc
tance of the system@28#. We see a sequence of overlappi
resonances that are broader in the high-energy region@Fig.
1~b!# than they are in the low-energy region@Fig. 1~a!#. As
typical situations for statistical investigations of the scatt
ing wave functions, we consider five points marked withA
;E in Fig. 1: T.0 (A), 0.5 ~B!, 1 ~C! for n51 in the
low-energy region andTÞ0, 1 for n51 (D), 4 ~E! in the
high-energy region. In the calculation of the statistics,
spatial average is taken in the cavity region correspondin
the closed stadium. For convenience, the area,A(5V), of
the cavity region is normalized to be unity.

Figure 2 shows the results of the numerical calculations
the probability distributionP(ucu2) and spatial correlation
P2(kr) together with their analytical predictions in which th
parameterb was determined numerically by Eqs.~3.7! and
~3.18!. Correspondingly, Fig. 3 shows the wave probabili
density, and nodal lines.

In Fig. 2~a!, we see that bothP(ucu2) andP2(kr) are very
close to the GOE predictions due to the almost total refl
tion of the initial wave. We recognize the space reciproc
05620
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as the coincidence of the nodal lines between Rec and Imc
in Fig. 3~a!.

In Fig. 3~b!, we find a ‘‘turbulence’’ corresponding to th
so-called bouncing-ball mode in the central region of t
stadium cavity. We see 14 vertical nodes associated w
marginally stable classical orbits bouncing vertically b
tween the straight edges. Bouncing-ball states are nonst
tical states since the amplitude ofc is strongly localized in
the middle region of the stadium~the space reciprocity hold
locally! and is very small in the endcaps~the space reciproc
ity does not necessarily hold!. As a result, the head and ta
of P(ucu2) for such states dominate@see Fig. 2~b!#. In order
to evaluate the effect of the bouncing-ball structure itself
the wave statistical properties, we consider closed integra
rectangle billiards. The probability distribution and spat

FIG. 1. Transmission probability as a function of Fermi wa
number for the open stadium billiard.~a! A low-energy region for
n51. ~b! A high-energy region forn51. ~c! A high-energy region
for n54.
8-4
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FIG. 2. Probability distribution~thick steps! and spatial correlation~thick line in the inset! of local densities in the open stadium billiar
for the condition~a! A, ~b! B, ~c! C, ~d! D, and~e! E in Fig. 1. Two thin lines show GOE and GUE cases~the same for the inset!. Dashed
thick line in ~b! is Eq. ~4.1! @Eq. ~4.2! for the inset# for the eigenstate with a pair of quantum numbers~1,15! andkd/p51.879 16 in the
closed square billiard corresponding to the middle region of the stadium billiard. Dotted thick line in~c!, ~d! and~e! is Eq. ~1.5! @Eq. ~1.6!
for the inset# for b51.10, 1.03 and 1.74, respectively.
o

l-

rs

the

-

correlation of the local wave densities in such systems sh
strong deviations from the GOE predictions@29#. The ana-
lytical form of the probability distribution is derived~see
Appendix A! as

P~y!5
1

p2Ay
KSA12

y

4D , ~4.1!

whereK(x) (0<x,1) is the argument of the complete e
liptic integral of the first kind with the amplitudep/2. The
universal equation~4.1! is independent of quantum numbe
05620
wand the aspect ratio of the rectangle. Correspondingly,
analytical form of the spatial correlation is also derived~see
Appendix B! as

P2~kr !511
1

2
@J0~2kr cosg!1J0~2kr sing!#

1
1

4
J0~2kr !, ~4.2!

whereg5tan21(k1 /k2) ~k1 andk2 are quantized wave num
8-5
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FIG. 3. ~Color! Contour plot of wave probability density~top!, nodal lines~middle; red lines for Rec and green lines for Imc!, and
probability current~bottom! in the open stadium billiard for the condition~a! A, ~b! B, ~c! C, ~d! D, and~e! E in Fig. 1. Initial wave comes
through the left lead into the cavity. The contours show about 97.5% of the largest wave probability density. Dotted light-blue line~b!
and ~d! show some of the short classical orbits corresponding to the localization of the wave probability density.
um
l

de-
T

nu-
the
bers corresponding to two sides of the rectangle!. We choose
an eigenstate of a square billiard with a pair of quant
numbers~1,15! andkd/p51.879 16 that are almost identica
to the conditionB, and Eqs.~4.1! and~4.2! are plotted in Fig.
0562
2~b!. We see that these analytical equations successfully
scribe the tendency of the overall deviations from the RM
predictions. More precise analytical agreements with the
merical results may be obtained by taking into account
08-6
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FIG. 3. ~Continued!.
-

b
- .
coexistence of regular~bouncing-ball! and chaotic wave-
function regions in the cavity~see Appendix C for a pro-
posed analytical simple model!.

In Fig. 3~c!, we see fully chaotic probability-density struc
tures in the cavity region with almost no reflection@see in the
nodal pattern in the left lead that the phase difference
tween Rec and Imc is p/2, showing plane-wave propaga
0562
e-

tion in one~right! direction#. In this case, we may expect the
GUE statistics. However, the nodal lines between Rec and
Im c are somewhat correlated as we see in Fig. 3~c!, so that
both P(ucu2) andP2(kr) show the intermediate between the
GOE and GUE predictions@see Fig. 2~c!#. They are quanti-
tatively consistent with Eqs.~1.5! and ~1.6! with b51.10
obtained numerically forc, which is close to the GOE case
08-7
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In general, the wave statistics show the GOE behaviors in
low-energy region~N51, whereN is the number of trans
mittable mode in the leads! as was first reported in Ref.@29#.
The reason is that the difference of the boundary condi
that Rec and Imc ‘‘feel’’ at the entrance of the cavity is
relatively small in the low-energy case, so that Rec and Imc
respond in almost the same manner, each of them produ
similar nodal patterns. This is certified by the fact thatb

FIG. 3. ~Continued!.
05620
e

n

ng

becomes large asd increases keeping the energy fixed~not
shown here!.

In the high-energy region (N54), Fig. 2~e! shows that
both P(ucu2) andP2(kr) are successfully described by Eq
~1.5! and ~1.6!, respectively, withb51.74 obtained numeri-
cally for c, which is very close to the GUE case. Figure 3~e!
confirms the uncorrelated nodal lines between Rec and Imc
in the cavity region. As we notice, the complete GUE sta
tics is conjectured to be obtained only in the high-ene
~semiclassical! limit. Our investigations show that, until th
energy reaches such a limit, the wave-function statis
demonstrate the crossover from the GOE to the GUE sta
tics by increasing the energy. Generic features ofP(ucu2)
andP2(kr) in this crossover regime can be described qu
titatively by Eqs.~1.5! and ~1.6!, respectively, with increas
ing b, which is independent of the initial moden for a fixed
d ~for numerical evidences, see Fig. 4!. We should note that
the statistics of Rec ~or Imc! in general shows the GOE in
spite of the crossover behavior ofc ~not shown here!.

Another possibility of the departure from the GUE is
localization effect reminiscent of the phenomenon known
‘‘scar’’ @30# describing an anomalous localization of qua
tum probability density along unstable periodic orbits
classically chaotic systems. The localization effect on wa
function intensity statistics has been examined using a ti
dependent approach, i.e., in terms of recurrences of a
Gaussian wave packet, for closed and weakly~imperfectly!

FIG. 4. Transition parameter vs initial mode for the open s
dium billiard. ~a! The case of leads shown in Fig. 3. The value ob
was obtained as an average for 4.643 35<kd/p<4.667 22.~b! The
case of leads four times wider than those shown in Fig. 3. The v
of b was obtained as an average for 18.573 38<kd/p<18.668 88.
8-8
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WAVE FUNCTION STATISTICS FOR BALLISTIC . . . PHYSICAL REVIEW E 64 056208
open systems@31–33#. They showed that the tail of th
wave-function intensity distribution in phase space is do
nated by scarring, departing from the RMT predictions.

In contrast, the most prominent effect of the localizati
of wave probability density in perfectly open billiards is th
local space reciprocity holding along the classical orbits c
responding to the localization not strongly coupled to a
~open! transmission channel@see Fig. 3~d!#: Along such or-
bits, nodal lines of Rec and Imc coincide, indicating coher-
ent overlap of time-reversed waves, and hence carrying
net current. As a result, bothP(ucu2) andP2(kr) are close to
the GOE predictions@see Fig. 2~d!#, and surprisingly in ex-
cellent agreement with Eqs.~1.5! and ~1.6!, respectively,
with b51.03 obtained numerically forc.

In the case of ‘‘localization’’ strongly coupled to both th
initial and one of the~open! transmission channels, the pha
difference between Rec and Imc along the corresponding
classical orbits isp/2, which indicates plane-wave propag
tion with nonzero probability current, resulting in anomaly
the wave statistics. The localization depicted with a dot
line in Fig. 3~b! is an example of this case, though the co
pling to the transmission channel is not so strong, as we
infer from both the value ofT and the amount of phas
difference.

Finally, we note that, in the case of open integrable cir
billiards, our numerical calculations show much peculiar b
haviors ofP(ucu2) andP2(kr) depending on the energy~not
shown here!. This fact suggests that neitherP(ucu2) nor
P2(kr) have universal expressions in the case of open i
grable billiards.

V. CONCLUSIONS

In conclusions, our numerical analyses show that chao
scattering wave functions in open systems can be quan
tively interpreted in terms of statistically independent re
and imaginary random fields. Statistical deviations fro
RMT are discussed in terms of the coexistence of regular
chaotic waves. This work leads to a deeper insight into
connection between the wave-function statistics in cha
open systems and the RMT for the time-reversal symme
breaking crossover regime in closed systems. The prope
of nodal structures in the wave dynamics have a close c
nection with the current statistics@12#.

The results presented in this paper are also relevant fo
Poynting vector describing the electromagnetic energy tra
port through a thin microwave resonator@34#, as well as for
sound propagation through an acoustic resonator@35,36#. We
propose that experiments performed in such devices
yield statistical properties described with the formalism p
sented in this paper, and hence successfully verify theore
predictions for a completely open ballistic system.
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APPENDIX A: PROBABILITY DISTRIBUTION
OF EIGENFUNCTIONS IN RECTANGLE BILLIARDS

A standard eigenfunction of a rectangle billiard is

c~r !5A sin~k1x1!sin~k2x2!, ~A1!

wherek1
21k2

25k2 and A is an arbitrary constant. From th
statistical point of view where we make a space average o
all the interior of the billiard, we can replace the argume
of the eigenfunction byk1x15a andk2x25b, wherea and
b are statistically independent random values uniformly d
tributed over an interval@2p,p#. Therefore, we can write the
pseudorandom wave-density field,r(r )[uc(r )u2, in the
form,

r5A2 sin2 a sin2 b, ~A2!

and obtain the value of its average as

^r&5A2^sin2 a&^sin2 b&5
A2

4
. ~A3!

We normalizec in such a way that̂r&51, i.e., A52. We
also obtain

^r2&516̂ sin4 a&^sin4 b&59/452.25. ~A4!

The distribution function of the eigenfunction densi
~A2! is

g~r!5^d~r2pq!&, ~A5!

wherep[2 sin2 a and q[2 sin2 b are statistically indepen
dent random variables with the identical distribution:

f ~z![^d~z2p!&5^d~z2q!&5
1

pAz~22z!
. ~A6!

Equation~A5! can be written as

g~r!5E E d~r2pq! f ~p! f ~q!dp dq5E f ~p! f S r

pD dp

p
.

~A7!

Substituting the distribution~A6! into Eq. ~A7!, we get

g~r!5
1

p2Ar
E

r

4 dz

Az~42z!~z2r!
~A8!

or equivalently

g~r!5
1

p2Ar
KSA12

r

4D ~0,r,4!, ~A9!
8-9
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whereK(z) (0<z,1) is the argument of the complete ellip
tic integral of the first kind with the amplitudep/2. In two
limits, g(r→0);@2/(p2Ar)# ln(1/r2) and g(4)5(4p)21.
The universal equation~A9! is independent of the quantiza
tion $k1 ,k2% and the aspect ratio of the rectangle. Finally,
note that Eq.~A9! has a logarithmic correction forr→0 by
comparison with the singularity;1/A2pr of the PT distri-
bution ~1.1!. This logarithmic correction is stipulated by th
presence of intersection points of nodal lines in integra
billiards. The absence of the logarithmic factor for the P
distribution is a witness of self-avoiding nature of nodal lin
in the case of chaotic billiards@37#.

APPENDIX B: SPATIAL CORRELATION
OF EIGENFUNCTIONS IN RECTANGLE BILLIARDS

In the analysis of the spatial correlation, it is broadly a
cepted to carry out not only averaging over the space of
billiard but additional rotation of the vectors that prescribes
the distance of two sampling pointsr andr1s. We write the
components of the vectors as

s15s cosu, s25s sinu, ~B1!

wheres[usu andu is a random angle uniformly distribute
over an interval@2p,p#. Then the correlation function of th
normalized eigenfunction,c(r )52 sin(k1x1)sin(k2x2), is
equal to

a~s!54^sin~a!sin~a1k1s cosu!sin~b!sin~b1k2s sinu!&,
~B2!

where a([k1x1), b([k2x2), and u are statistically inde-
pendent random values uniformly distributed over@2p,p#.
Carrying out averaging overa andb, we obtain

a~s!5^cos~k1s cosu!cos~k2s sinu!& ~B3!

or, rewritingk1[k cosg andk2[k sing (k1
21k2

25k2),

a~s!5
1

2
^@cos„kscos~g1u!…1cos„kscos~g2u!#…#&.

~B4!

Here the angular brackets means averaging over the ran
u. After carrying out this averaging, we obtain a Bessel c
relation function,

a~s!5J0~ks!, ~B5!

which is similar to Eq.~1.3!. Nevertheless, the correlatio
function of the local density,r(r ), significantly differs from
Eq. ~1.4!, as is shown below.

The correlation functionbr(s)5^r(r )r(r1s)& is reduced
to the expression,

br~s!516̂ sin2~a!sin2~a1k1s cosu!sin2~b!

3sin2~b1k2s sinu!&, ~B6!

or, after averaging over the statistically independenta andb,
05620
e

-
e

om
-

br~s!5
1

4
^@21cos~2k1s cosu!#@21cos~2k2s sinu!#&,

~B7!

where the angular brackets means averaging over the ran
u. After carrying out this averaging, we obtain the final form

br~s!511
1

2
@J0~2k1s!1J0~2k2s!#1

1

4
J0~2ks!.

~B8!

Contrary to the probability distribution~A9!, the correla-
tion function ofr(r ) does not have the same kind of unive
sality for the quantization$k1 ,k2% and the aspect ratio of th
rectangle. We show some examples ofbr(s) for different
pairs of$k1 ,k2% ~see Fig. 5!. There we find that the correla
tion functionbr(s) significantly differs for different choices
of k1 andk2 and converges asbr(0)59/4 andbr(`)51.

APPENDIX C: PROBABILITY DISTRIBUTION
OF EIGENFUNCTIONS WITH MIXING CHAOTIC

AND REGULAR STRUCTURES

We discussed that the PT distribution~1.1! applies to real
chaotic eigenfunctions and Eq.~4.1! to eigenfunctions of
rectangle billiards. In realistic situations in experimen
measurements or numerical simulations, however, suc
purely chaotic or regular state hardly arise. Instead we o
see mixing of chaotic fields and some resonant regu
modes. So it is worth proposing some simple model of wa
density distribution in the case of mixing chaotic and regu
wave functions.

FIG. 5. Spatial correlation of local densities in the rectan
~square! billiard with Dirichlet conditions at the boundaries. Deno
ing two sides of the rectangle,a andb, and corresponding quantum
numbers,m andn. We choosek1(5mp/a) andk2(5np/b) as~a!
(a,b)5(25p,25p). (m,n)5(7.24): ~b! (a,b)2(25p,25p),
(m,n)5(15,20); ~c! (a,b)5(2.485 82,2.872 93); (m,n)5(1.22):
~d! (a,b)5(2.485 82,2.872 93), (m,n)5(16,11).
8-10
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The simplest model for such a situation may be

c5
u1ew

A11e2
. ~C1!

Here u is a Gaussian random variable with zero mean a
unit variance, and describing a chaotic field.w is a contribu-
tion of a regular eigenfunction of a rectangle billiard, a
expressed as

w52 sina sinb, ~C2!

wherea andb are statistically independent values uniform
distributed over an interval@2p,p#. In Eq. ~C1!, a mixing
parametere prescribes the degree ofw contribution tou and
is essentially different from the GOE-GUE transition para
etere ~andb!.

We recall a general probabilistic relation tying up togeth
the distributionf (x) of an arbitrary random valueX and the
distributiong(z) of its squareZ5X2:

g~z!5
1

2Az
@ f ~Az!1 f ~A2z!# ~z.0!. ~C3!

From Eq.~4.1!, the probability distribution ofw is found to
be

P~w!5
1

p2 KSA12
w2

4 D ~22,w,2!. ~C4!

Therefore, the distribution of the entire mixed wave functi
~C1! is

f e~c!5
2

p2A11e2

2p E
21

1

expF2
1

2
~cA11e2

22em!2GK~A12m2!dm. ~C5!
n-

A

,

en
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rCorrespondingly, the distribution of the wave density,r
(5c2), is described from Eq.~C3! by

ge~r!5
f e~Ar!

Ar
. ~C6!

It becomes Eq.~1.1! in the casee50 and Eq.~4.1! in the
limit e→`. In Fig. 6, ge(r) is plotted in comparison with
our numerical data@the same shown in Fig. 2~b!# of the open
stadium billiard. There it is assumed that the regular wave
the central areaS lying between the straight segments of t
stadium is overlapped with the chaotic wave developed
the entire areaA of the cavity. Reflecting the fact that th
data in Fig. 2~b! is in the case of low-energy region whe
the real and imaginary parts of the wave function are som
what correlated with each other in the entire region of
cavity @see Fig. 3~b!#, the model~C1! based on mixing of
real chaotic and regular waves shows rather good agreem
with our numerical data@except the long tailr*3.6, where
the singularity of the distribution~C4! at r54 plays a sig-
nificant role# in spite of the simplification of the model.

FIG. 6. Probability distribution of local densities of the mixe
wave function~C1!. Dotted thick line showsge(r) for e54/(p
14)(5S/A). Two thin lines correspond to the cases ofe50 and
e5`. Thick steps are the same as are depicted in Fig. 2~b!.
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